
Towards reproducible computational
biology: An introductory tutorial

Release 2019.01

Sebastian Schmeier (https://sschmeier.com)

Apr 02, 2019

CONTENTS

1 An introductory tutorial 1
1.1 Introduction . 1

1.1.1 Prerequisites . 1
1.1.2 Learning outcomes . 2
1.1.3 The data we will be using . 2
1.1.4 The analysis workflow . 2

1.2 Working reproducible . 4
1.2.1 What is the problem? . 4
1.2.2 How to tackle this problem? . 4
1.2.3 Background reading on reproducibility . 4

1.3 Tool and package management . 5
1.3.1 Installing the Conda package manager . 5
1.3.2 Using conda to search and install tools . 6
1.3.3 Create isolated environments . 6
1.3.4 General Conda commands . 8

1.4 Creating analysis workflows . 8
1.4.1 What is a workflow management system? . 8
1.4.2 What is Snakemake? . 9
1.4.3 Setup . 9
1.4.4 The analysis without a workflow management system 10
1.4.5 Using a workflow management system . 13
1.4.6 Making your work available . 23

1.5 Containerization . 25
1.5.1 What is containerization? . 25
1.5.2 What does it accomplish for us? . 26
1.5.3 Using a Singularity container . 26
1.5.4 Building your own Singularity container locally 26
1.5.5 Building a container on Singularity Hub . 27
1.5.6 Using a container in our workflow . 28
1.5.7 Using one container for the whole workflow . 29
1.5.8 Ready made containers . 30
1.5.9 Combining containers with conda-based package management 30
1.5.10 Background reading on containers . 31

1.6 Downloads . 31
1.6.1 Tools . 31
1.6.2 Data . 31

Bibliography 37

i

ii

CHAPTER

ONE

AN INTRODUCTORY TUTORIAL

This is an introductory tutorial for working in a reproducible manner in bioinformatics/genomics and
related fields of study. You will learn how to analyse some next-generation sequencing (NGS) data. The
idea here is not to facilitate the best possible analysis of this data or to use the best tools available, but
rather to learn some tools that are available to us for making our analysis as reproducible as possible.
The data you will be using is real research data, albeit down-sampled to make the analyses finish in a
reasonable time.

Currently, Dr. Sebastian Schmeier1 is teaching this material at Massey University in Auckland, New
Zealand.

More information about other bioinformatics material, tutorials, and our research can be found on the
webpages of the Schmeier Group2 (https://sschmeier.com).

Note: A online version of this tutorial can be accessed at https://reproducibility.sschmeier.com.

1.1 Introduction

This is an introductory tutorial for learning to work reproducible in bioinformatics/genomics research.
This tutorial makes extensive use of the command-line interface.

We will be analysing RNA-seq/transcriptomics samples from yeast. However, in the context of this tu-
torial the biological background or relevance is of no real importance to us. The aim here is not to
understand the data, or bioinformatics tools for that matter, but rather how to structure the analysis
steps in a way that you or someone else can redo the analysis and derive at the same results. Yes, the
bioinformatics tools we are using here are real and the analyses performed here can be applied to other
datasets too, however, all tools can be substituted for alternatives.

Note: The focus in this tutorial is not on the bioinformatics tools, but rather on the tools that
facilitate reproducible analyses.

1.1.1 Prerequisites

• This tutorial generally assumes you work in a Unix/Linux type of environment (a minimal tutorial
can be assessed here3), however, MacOS is fine too.

1 https://sschmeier.com
2 https://sschmeier.com
3 https://linux.sschmeier.com

1

https://sschmeier.com
https://sschmeier.com
https://sschmeier.com
https://reproducibility.sschmeier.com
https://linux.sschmeier.com

Towards reproducible computational biology: An introductory tutorial, Release 2019.01

• You should be relatively comfortable using the command-line interface (you can update your
knowledge using the excellent introductory material of the Software Carpentry4: here5).

• You should have a basic knowledge of version control. We are going to use Git6 here. A good
tutorial, again, is available from the Software Carpentry7: here8

• Any bioinformatics knowledge is a bonus but not strictly required (a Genomics tutorial can be
assessed here9).

1.1.2 Learning outcomes

During this tutorial you will learn to:

• Use conda10 and in particular Bioconda11 [GRUENING2018] for tool installation and tracking of
the version numbers of the used tools.

• Use Snakemake12 [KOESTER2012] to create workflows / pipelines to analyse your data in a way
that is accessible and reproducible.

• Understand how containerization of software can facilitate reproducibility in an operating system
independent manner.

• Use Git13 as a means to version control our analysis workflow and make it publicly available.

1.1.3 The data we will be using

In this tutorial we will analyse public data stemming from a transcriptomics experiment (RNA-
sequencing) using next-generation sequencing (NGS). The associated publication is entitled “Dynamics
of the Saccharomyces cerevisiae Transcriptome during Bread Dough Fermentation” and can be found here14

[ASLANKOOHI2013]. The associated data has been deposited at the Short Read Archive15 and can be
found here (accession: PRJNA212389)16. The final aim in this tutorial is to quantify the expression of
genes in each sample.

Note: The data has been downloaded already and is being made available within a Git17 repository
accompanying this tutorial. To facilitate timely analyses during this tutorial, the original data has been
down-sampled.

An overview of a typical RNA-seq experiment can be seen in Fig. 1.1. RNA gets extracted from samples
of interest and reverse transcribed and sequenced as a proxy for gene expression of the sample (either a
set of cells or single cell).

1.1.4 The analysis workflow

We will be using a traditional set-up for analysing RNA-seq data, where sequenced reads will be cleaned,
mapped to a reference genome, and finally reads per transcript/gene-model counted. The workflow is
summarised in Fig. 1.2.

4 https://software-carpentry.org
5 http://swcarpentry.github.io/shell-novice/
6 https://git-scm.com/
7 https://software-carpentry.org
8 http://swcarpentry.github.io/git-novice
9 https://genomics.sschmeier.com

10 http://conda.pydata.org/miniconda.html
11 https://bioconda.github.io/
12 http://snakemake.readthedocs.io/en/latest/
13 https://git-scm.com/
14 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3837736/
15 https://www.ncbi.nlm.nih.gov/sra
16 https://www.ncbi.nlm.nih.gov/bioproject/PRJNA212389
17 https://git-scm.com/

2 Chapter 1. An introductory tutorial

https://software-carpentry.org
http://swcarpentry.github.io/shell-novice/
https://git-scm.com/
https://software-carpentry.org
http://swcarpentry.github.io/git-novice
https://genomics.sschmeier.com
http://conda.pydata.org/miniconda.html
https://bioconda.github.io/
http://snakemake.readthedocs.io/en/latest/
https://git-scm.com/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3837736/
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA212389
https://git-scm.com/

Towards reproducible computational biology: An introductory tutorial, Release 2019.01

Fig. 1.1: RNA-seq overview (from https://doi.org/10.1371/journal.pcbi.1004393) [GRIFFITH2015].

Fig. 1.2: The tutorial will analyse data using this workflow.

1.1. Introduction 3

https://doi.org/10.1371/journal.pcbi.1004393

Towards reproducible computational biology: An introductory tutorial, Release 2019.01

1. Quality control - We will be filtering reads based on read quality.

2. Read mapping - We Will be using a tool for mapping reads to the human genome.

3. Feature counting - We will count reads per gene model to derive gene expression values.

1.2 Working reproducible

1.2.1 What is the problem?

The current norm, when publishing your research manuscript does, for the most part, not require you to
submit a detailed analysis protocol to the journal. This is true for experimental as well as computational
work. This inhibits anyone (including the original authors) to reproduce the exact analysis steps that
were performed using only the information contained within the journal article. Hence, deriving at the
same results as the original study is based on luck, and for the most parts currently impossible.

While experimentalists, generally speaking, take care of recording their analyses in lab notebooks, these
are by no means publicly available and often buried somewhere in the lab facility and often lost. The
situation is worse in computational research, where lab notebooks are not the norm, and analyses are
often done “as you go”. This situation seems strange, as on the computational side one would expect
that keeping score of the steps involved in an analysis should be easier.

1.2.2 How to tackle this problem?

In this tutorial we are dealing with the computational side of things. We will focus on using a set of
tools that helps us developing analyses workflows that are reproducible, or at least as close as possible to
being reproducible. The tools here are by no means the only ones and many other are available to help
you in the task of keeping score of what you have done.

Our approach for getting a reproducible analysis in place will require:

1. Keeping track of the used tools and their versions. (addressed in Tool and package management
(page 5))

2. Keeping track of the commands used to analyse the data, including tool parameters. (ad-
dressed in Creating analysis workflows (page 8))

3. Publishing & versioning the workflow information, as to keep track of when workflows
change and what changes occurred. (addressed in Creating analysis workflows (page 8))

1.2.3 Background reading on reproducibility

• NIH plans to enhance reproducibility. [COLLINS2014].

• A Framework for Improving the Quality of Research in the Biological Sciences.
[CASADEVALL2016]

• All hail reproducibility in microbiome research. [RAVEL2014]

• Quantifying reproducibility in computational biology: The case of the tuberculosis drugome.
[GARIJO2013]

• A quick guide to organizing computational biology projects. [NOBLE2009]

• Investigating reproducibility and tracking provenance. [KANWAL2017]

4 Chapter 1. An introductory tutorial

Towards reproducible computational biology: An introductory tutorial, Release 2019.01

1.3 Tool and package management

Here, we will tackle the first item on the list towards more reproducibility:

Keeping track of the used tools and their versions.

This can be achieved by using an appropriate package manager. As an example we are going to use
conda28 with the Bioconda29 software channel.

1.3.1 Installing the Conda package manager

We will use the package/tool managing system conda30 to install some programs that we will use during
the course. It is not installed by default, thus we need to install it first to be able to use it.

download latest conda installer
$ curl -O https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh

run the installer
$ bash Miniconda3-latest-Linux-x86_64.sh

delete the installer after successful run
$ rm Miniconda3-latest-Linux-x86_64.sh

Note: Should the conda installer download fail. Please find links to alternative locations on the Down-
loads (page 31) page.

Update .bashrc and .zshrc config-files

Before we are able to use conda we need to tell our shell where it can find the program. We add the
right path to the conda installation to our shell config files:

$ echo 'export PATH="~/miniconda3/bin:$PATH"' >> ~/.bashrc
$ echo 'export PATH="~/miniconda3/bin:$PATH"' >> ~/.zshrc

So what is actually happening here? We are appending a line to a file (either .bashrc or .zshrc). If we
are starting a new command-line shell, either file gets executed first (depending on which shell you are
using, either bash or zsh shells). What this line does, is to put permanently the directory ~/miniconda3/
bin first on your PATH variable. The PATH variable contains directories in which our computer looks for
installed programs, one directory after the other until the program you requested is found (or not, then
it will complain). Through the addition of the above line we make sure that the program conda can be
found any time we open a new shell.

Close shell/terminal, re-open new shell/terminal. Now, we should be able to use the conda command:

$ conda update conda

Installing conda channels to make tools available

Different tools are packaged in what conda calls channels. We need to add some channels to make
the bioinformatics and genomics tools available for installation. In particular we need the Bioconda31

channel, that pre-packages many bioinformatics tools.
28 http://conda.pydata.org/miniconda.html
29 https://bioconda.github.io/
30 http://conda.pydata.org/miniconda.html
31 https://bioconda.github.io/

1.3. Tool and package management 5

http://conda.pydata.org/miniconda.html
https://bioconda.github.io/
http://conda.pydata.org/miniconda.html
https://bioconda.github.io/

Towards reproducible computational biology: An introductory tutorial, Release 2019.01

Install some conda channels
A channel is where conda looks for packages
$ conda config --add channels defaults
$ conda config --add channels conda-forge
$ conda config --add channels bioconda

1.3.2 Using conda to search and install tools

Let us first look for a tool, e.g. the aligner BWA32:

Look for available tools/packages
$ conda search bwa
Loading channels: done
Name Version Build Channel
bwa 0.5.9 0 bioconda
bwa 0.5.9 1 bioconda
bwa 0.6.2 0 bioconda
bwa 0.6.2 1 bioconda
bwa 0.7.3a 0 bioconda
...

We can see that the tool is available and several versions can be installed. To install software (here BWA)
using conda, one uses the command conda install:

install a tool into the environment
$ conda install bwa
to install a particular version of a tool do
$ conda install bwa=0.6.2

Note: Without a version number conda33 tries to install the latest version for you.

While conda was in the first place not developed for bioinformatics/genomics type of tools/packages,
clever people took the system and packaged bioinformatics tools into the conda system. To not confuse
things with the original conda system, people are using “channels” to distribute software that is related.
We already made three software “channels” available to our conda installation: conda-forge, defaults,
bioconda. Specifically, the Bioconda channel is of importance to us as it makes ~3000 bioinformatics
packages available to us [GRUENING2018].

1.3.3 Create isolated environments

While having one software manager for all your bioinformatics tools is great already, conda has one
particular strength that we are going to exploit often during the course of this tutorial. Conda can
create isolated environments for sets of user-defined tools. The tools and their version numbers within
environments, once created, can be easily saved in a file. Using these files we can easily re-create an
environment from scratch with the same tool-set with the same version numbers. Awesome!

Create a base environment
$ conda create -n tutorial python=3
Activate the environment
$ conda activate tutorial

So what is happening when you type conda activate tutorial in a shell. The PATH variable (mentioned
above) gets temporarily manipulated and set to:

32 http://bio-bwa.sourceforge.net/
33 http://conda.pydata.org/miniconda.html

6 Chapter 1. An introductory tutorial

http://bio-bwa.sourceforge.net/
http://conda.pydata.org/miniconda.html

Towards reproducible computational biology: An introductory tutorial, Release 2019.01

$ conda activate tutorial
Lets look at the content of the PATH variable
(tutorial) $ echo $PATH
~/miniconda3/envs/tutorial/bin:~/miniconda3/bin:/usr/local/bin: ...

Now it will look first in your environment’s bin-directory (here ~/miniconda3/envs/tutorial/bin) and
only afterwards in the general conda34 bin-directory (~/miniconda3/bin). So basically everything you
install generally with conda install (without being in an environment) is also available to you but gets
overshadowed if a similar program is in ~/miniconda3/envs/tutorial/bin and you have activated the
tutorial environment.

Note: To tell if you are in the correct conda environment, look at the command-prompt. Do you see the
name of the environment in round brackets at the very beginning of the prompt, e.g. (tutorial)? If not,
activate the tutorial environment with conda activate tutorial before installing the tools.

To leave an environment just type:

(tutorial) $ conda deactivate
Lets look at the content of the PATH variable
$ echo $PATH
~/miniconda3/bin:/usr/local/bin: ...

The command conda list will show you the packages that are installed within the environment:

$ conda activate tutorial
list all installed
(tutorial) $ conda list

Looks like the tools bwa we wanted is installed.

Ok, now we want to get a snapshot of the current environment so that we could recreate it either here
or on another machine running the same operating system.

Lets export the environment into a yaml-file
(tutorial) $ conda env export > tutorial.yaml

Lets have a look into the tutorial.yaml file.

(tutorial) $ cat tutorial.yaml

To deactivate the environment again type:

Deactivate environment
(tutorial) $ conda deactivate

Now we delete the environment, specifying the name again with -n tutorial

Delete original "tutorial" environment
$ conda env remove -n tutorial

Now, we can use the created yaml-file to recreate the former tutorial environment, we submit the file
with --file to conda env create.

Lets recreate an environment using the tutorial.yaml file
$ conda env create -n tutorial --file tutorial.yml

Activate environment
$ conda activate tutorial

34 http://conda.pydata.org/miniconda.html

1.3. Tool and package management 7

http://conda.pydata.org/miniconda.html

Towards reproducible computational biology: An introductory tutorial, Release 2019.01

Done! So we learned that we can create conda environments for a certain tool or toolset/packages and
store the installed tools and their installed version numbers in a yaml-file that can be used to recreate
the environment. This enables us in a very easy way to keep track of the tools and versions used in our
analysis.

Note: It is good practice to include a yaml file of your environment in your analysis directory and submit
it together with the rest of your code.

1.3.4 General Conda commands

to search for packages
conda search PACKAGE

Install
conda install PACKAGE

To update all packages
conda update --all --yes

List all packages installed
conda list [-n ENV]

conda list environments
conda env list

create new environment with packages
conda create -n ENV PACKAGE [PACKAGE] ...

activate environment
conda activate ENV

deavtivate environment
conda deactivate

export env
conda env export > env.yaml

recreate env from file
conda env create -n ENV -f env.yaml

1.4 Creating analysis workflows

1.4.1 What is a workflow management system?

A workflow management system provides an infrastructure for the setting up, performing and monitoring
defined sequences of commands, hence addressing our second requirement:

Keeping track of the commands used to analyse the data, including tool parameters.

There are many such systems and some have been specifically designed for genomics and bioinformatics
tasks. An recent overview can be accessed here [LEIPZIG2017].

8 Chapter 1. An introductory tutorial

Towards reproducible computational biology: An introductory tutorial, Release 2019.01

1.4.2 What is Snakemake?

Snakemake35 is a workflow engine, developed for creating scalable bioinformatics and genomics work-
flows [KOESTER2012]. It borrows ideas from an old system for compiling and link a program Make36

and extends the ideas to help with bioinformatics pipelines. We will be using Snakemake to run our
complete analysis for us, from start to end. Snakemake will make sure that our jobs are run in the cor-
rect order and will recognise if jobs have already been run and thus do not have to be run again. It will
also recognise if input files changed and thus jobs have to be re-run. Correctly configured, Snakemake
will take care of error logging, benchmarking, and simultaneous execution of our jobs (it is also able to
distribute jobs to computer clusters). We will see that combined with conda37 it makes for a powerful
system for developing and running reproducible analyses workflows.

1.4.3 Setup

Install Snakemake

We are going to create a general conda environment and install Snakemake into it.

$ conda create -n tutorial python=3 snakemake
activate the environment
$ source activate tutorial

Download data

I prepared a Git38 repository that contains the some data we will work with. You can download the
repository using:

$ git clone https://gitlab.com/schmeierlab/reproduce-tutorial.git
or try
$ git clone git@gitlab.com:schmeierlab/reproduce-tutorial.git

Change into the created directory
$ cd reproduce-tutorial

Let delete the associated git remote
$ git remote remove origin

Note: If the cloning with Git39 does not work, you can download a zipped archive
of the whole repository here https://gitlab.com/schmeierlab/reproduce-tutorial/-/archive/
master/reproduce-tutorial-master.zip. The locally on the command-line, you can type unzip
reproduce-tutorial-master.zip.

Let’s investigate the directory:

$ tree
.

README.md
Snakefile
analyses

results
README.md

(continues on next page)

35 http://snakemake.readthedocs.io/en/latest/
36 https://www.gnu.org/software/make/manual/make.html
37 http://conda.pydata.org/miniconda.html
38 https://git-scm.com/
39 https://git-scm.com/

1.4. Creating analysis workflows 9

http://snakemake.readthedocs.io/en/latest/
https://www.gnu.org/software/make/manual/make.html
http://conda.pydata.org/miniconda.html
https://git-scm.com/
https://git-scm.com/
https://gitlab.com/schmeierlab/reproduce-tutorial/-/archive/master/reproduce-tutorial-master.zip
https://gitlab.com/schmeierlab/reproduce-tutorial/-/archive/master/reproduce-tutorial-master.zip

Towards reproducible computational biology: An introductory tutorial, Release 2019.01

(continued from previous page)

data
Saccharomyces_cerevisiae.R64-1-1.92.gtf.gz
Saccharomyces_cerevisiae.R64-1-1.dna_sm.toplevel.fa

envs
map.yaml
sickle.yaml
snakemake-kubernetes.yaml
snakemake.yaml
subread.yaml

examples
Snakefile_v2
...

fastq
SRR941826.fastq.gz
SRR941827.fastq.gz
SRR941830.fastq.gz
SRR941831.fastq.gz

help
bwa.help
featureCounts.help
sickle.se.help
snakemake.help

This directory contains all the files we need to do this tutorial. There are four fastq-files in the fastq
directory that we want to clean and map to the reference genome. Finally, we will count the reads per
gene and per sample. The complete workflow is depicted in Fig. 1.3.

Note: The repository contains the downloaded the genome, the annotation, and the samples already.
This can be done as well via Snakemake40 but goes beyond the topic of this tutorial. Should you be
interested to see how this was done later on, you can have a look here41 and here42.

1.4.4 The analysis without a workflow management system

We can of course do this analysis without any workflow management system and write down the com-
mands one by one. Given that we only have four samples, this is not particular difficult. However, this
process does not scale well if we decide to do it for 400 samples. So we are later going to use a workflow
management system that creates for us the commands for each sample without us doing it explicitly.
However, here we are going to look at each step and write down the command for one of the samples
(SRR941826) to understand what is involved.

Activate our conda43 environment for the tutorial session:

conda activate tutorial

Data QC

The purpose of this step is to remove bases from the ends of the reads that are of bad quality. There are
many tools that can do this for us. Here, we are going to use the program Sickle44 to perform this task
[JOSHI2011]. The program is easy to use.

After installing Sickle45, running sickle by itself will print the help:
40 http://snakemake.readthedocs.io/en/latest/
41 https://gitlab.com/snippets/1723667
42 https://gitlab.com/snippets/1723667
43 http://conda.pydata.org/miniconda.html
44 https://github.com/najoshi/sickle
45 https://github.com/najoshi/sickle

10 Chapter 1. An introductory tutorial

http://snakemake.readthedocs.io/en/latest/
https://gitlab.com/snippets/1723667
https://gitlab.com/snippets/1723667
http://conda.pydata.org/miniconda.html
https://github.com/najoshi/sickle
https://github.com/najoshi/sickle

Towards reproducible computational biology: An introductory tutorial, Release 2019.01

Fig. 1.3: The workflow: Data QC step.

install sickle
$ conda install sickle-trim
$ sickle

Running sickle with either the single-end (se) or paired-end (pe) reads:

sickle se
sickle pe

Here the command for our single-end fastq-file:

$ sickle se -g -t sanger -f fastq/SRR941826.fastq.gz -o analyses/results/SRR941826.trimmed.fastq.gz

• -g: will facilitate gzip output

• -t: specifies the quality metric used in the fastq-file

• -f: input filename

• -o: output filename

Easy enough! Lets map reads.

Read mapping

Fig. 1.4: The workflow: The mapping step.

We use BWA46 and SAMtools47 to get mapped reads in bam-format. In order to map the reads to the
genome we first need to index the genome:

46 http://bio-bwa.sourceforge.net/
47 http://samtools.sourceforge.net/

1.4. Creating analysis workflows 11

http://bio-bwa.sourceforge.net/
http://samtools.sourceforge.net/

Towards reproducible computational biology: An introductory tutorial, Release 2019.01

$ conda install bwa samtools
$ bwa index data/Saccharomyces_cerevisiae.R64-1-1.dna_sm.toplevel.fa

Now we can take a sample and map it:

$ bwa mem -t 8 data/Saccharomyces_cerevisiae.R64-1-1.dna_sm.toplevel.fa analyses/results/SRR941826.
→˓trimmed.fastq.gz
| samtools view -Sbh > analyses/results/SRR941826.bam

• BWA48:-t 8: specify how many threads can be used at the same time.

• SAMtools49 view: -Sbh: Include the header in the output and creates bam format output.

Feature counting

Fig. 1.5: The workflow: Expression quantification step.

We are using the featureCounts tool of the subread package to count reads per feature.

$ conda install subread
$ featureCounts -T 4 -t exon -g gene_id

-a data/Saccharomyces_cerevisiae.R64-1-1.92.gtf.gz
-o counts.txt analyses/results/SRR941826.bam

• -T: Number of threads to use at the same time

• -t: Specify feature type in GTF annotation. Features used for read counting will be extracted from
annotation using the provided value.

• -g: Specify attribute type in GTF annotation

• -a: The annotation file with the features

• -o: Output file

Saving tool version information

Great, we have done our analysis of all four samples. Now, we can export our conda50 environment and
save the information in a file:

$ conda activate tutorial
$ conda env export > tutorial.yaml

48 http://bio-bwa.sourceforge.net/
49 http://samtools.sourceforge.net/
50 http://conda.pydata.org/miniconda.html

12 Chapter 1. An introductory tutorial

http://bio-bwa.sourceforge.net/
http://samtools.sourceforge.net/
http://conda.pydata.org/miniconda.html

Towards reproducible computational biology: An introductory tutorial, Release 2019.01

This file contains the tools and their versions that we used in this analysis. We could give this file to
someone else and they could, given they work on the same operating system, recreate the same conda51

environment and redo the analysis.

Summary

So, generally we could use the programs on the command-line like shown above with one sample after
the other. However, we do not want to do this, as in this manner we do not save the information about
the commands we used. We could of course put all commands in a bash-script and in this manner
remember all commands that have been run.

However, we would still not be able to keep this approach general to run it again and again on different
(numbers) of samples. We can do better! This is were Snakemake52 comes into play.

1.4.5 Using a workflow management system

Let’s look at the complete workflow again for one samples:

1 Trimming
$ sickle se -g -t sanger -f fastq/SRR941826.fastq.gz -o analyses/results/SRR941826.trimmed.fastq.gz

2 Genome indexing
$ bwa index data/Saccharomyces_cerevisiae.R64-1-1.dna_sm.toplevel.fa

3 Read mapping
$ bwa mem -t 8 data/Saccharomyces_cerevisiae.R64-1-1.dna_sm.toplevel.fa analyses/results/SRR941826.
→˓trimmed.fastq.gz

| samtools view -Sbh > analyses/results/SRR941826.bam

4 Counting reads per features
$ featureCounts -T 4 -t exon -g gene_id

-a data/Saccharomyces_cerevisiae.R64-1-1.92.gtf.gz
-o counts.txt analyses/results/SRR941826.bam

We will engineer now this workflow in the workflow management system Snakemake53. However, it
will be general with no filenames hard-coded, so that we can run the same workflow on any arbitrary
number of fastq-files of the same type, here single-end reads.

Snakemake

Snakemake54 uses rules that define how to get from an input to an output. These rules are defined in a
Snakefile that is read upon Snakemake execution. A basic structure of a rule looks like this:

Listing 1.1: Example rule in a Snakefile

1 rule do-something:
2 input:
3 "{sample}.fastq"
4 output:
5 "{sample}.out"
6 shell:
7 "SOMECOMMAND {input} {output}"

51 http://conda.pydata.org/miniconda.html
52 http://snakemake.readthedocs.io/en/latest/
53 http://snakemake.readthedocs.io/en/latest/
54 http://snakemake.readthedocs.io/en/latest/

1.4. Creating analysis workflows 13

http://conda.pydata.org/miniconda.html
http://snakemake.readthedocs.io/en/latest/
http://snakemake.readthedocs.io/en/latest/
http://snakemake.readthedocs.io/en/latest/

Towards reproducible computational biology: An introductory tutorial, Release 2019.01

In this example, we have an input file and an output file, as well as a way to get from the input to the
output via a shell command. Rules can either use shell commands, plain Python code or external scripts
to create output files from input files. Curly brackets define wildcards that get substituted.

Once, you have written lots of rules, Snakemake determines the rule dependencies by matching file
names.

Let us write a rule for trimming to see how this works in practice.

Creating rules

Let us build a general rule for the first step, the read trimming via sickle. The original command was:

$ sickle se -g -t sanger -f fastq/SRR941826.fastq.gz -o analyses/results/SRR941826.trimmed.fastq.gz

We will use this command in our first rule and substitute the input and output part, as well as some of
the parameters with wildcards.

In the working directory their is an empty Snakefile. We will add to this file during the tutorial. Open
this file in a text editor.

Listing 1.2: File: Snakefile_v1

1 rule trimse:
2 input:
3 "fastq/{sample}.fastq.gz"
4 output:
5 "analyses/results/{sample}.trimmed.fastq.gz"
6 params:
7 qualtype="sanger"
8 shell:
9 "sickle se -g -t {params.qualtype} -f {input} -o {output}"

The command in the shell keyword section will be used to trim the data. However, before it is executed,
Snakemake will replace the wildcards in the command with the proper values defined in the other sec-
tions of the rule. Of note, we introduce here as well a keyword params (highlighted lines), with which
one can add more flexibility to the values that get substituted in the shell command.

Fine, but what is happening with the strange {sample} wildcard? The wildcard will be replaced by
Snakemake to try and match our requested final targets. However, we have not defined any targets yet.

Snakemake needs to know for what to run this rule. We need to define result or target files we want to
create.

Note: 1. Snakemake works by matching file-names, i.e. finding rules that can generate the requested
files from other files. 2. Snakemake automatically creates directories if they do not already exist (e.g.
analyses/results/).

Lets define some targets. We are creating a pseudorule (all) that only defines inputs, which are our
expected final targets. In this way, Snakemake finds the rule all and tries to figure out which rules can
be run to create the desired output target files. It will find that our rule trimse can accomplish this when
run four times with four different input files by substituting the {sample} wildcard.

Listing 1.3: File: Snakefile_v2

1 rule all:
2 input:
3 ["analyses/results/SRR941826.trimmed.fastq.gz",
4 "analyses/results/SRR941827.trimmed.fastq.gz",
5 "analyses/results/SRR941830.trimmed.fastq.gz",

(continues on next page)

14 Chapter 1. An introductory tutorial

Towards reproducible computational biology: An introductory tutorial, Release 2019.01

(continued from previous page)

6 "analyses/results/SRR941831.trimmed.fastq.gz"]
7

8 rule trimse:
9 input:

10 "fastq/{sample}.fastq.gz"
11 output:
12 "analyses/results/{sample}.trimmed.fastq.gz"
13 params:
14 qualtype="sanger"
15 shell:
16 "sickle se -g -t {params.qualtype} -f {input} -o {output}"

We defined four target files. Let us look what happens here for one of the target files when you run
Snakemake.

• Snakemake finds that you request to create the file analyses/results/SRR941826.trimmed.fastq.
gz.

• Snakemake will scan all rules, to identify which rule can create this file (Snakemake will try to
substitute any wildcards like {sample} and try to match file names).

• In our case, it will find that substituting {sample} in the output section of rule trimse (analyses/
results/{sample}.trimmed.fastq.gz) with SRR941826 will match the requested target file name
analyses/results/SRR941826.trimmed.fastq.gz

• Snakemake will check if the input file of rule trimse (fastq/{sample}.fastq.gz) with a substituted
{sample} part with SRR941826 (fastq/SRR941826.fastq.gz) exists.

• If this file can be found the rule will be scheduled for execution. If the input cannot be found,
Snakemake will complain that the requred input for creating the requested file is missing.

Ok, this Snakefile can already be run with the snakemake command. We can do a dry-run (without
actually running anything) to see the commands that Snakemake would execute. We use the snakemake
flag -n for dry-run and -p to see the commands that Snakemake would execute:

$ snakemake -np
Building DAG of jobs...
Job counts:

count jobs
1 all
4 trimse
5

rule trimse:
input: fastq/SRR941830.fastq.gz
output: analyses/results/SRR941830.trimmed.fastq.gz
jobid: 3
wildcards: sample=SRR941830

sickle se -g -t sanger -f fastq/SRR941830.fastq.gz -o analyses/results/SRR941830.trimmed.fastq.gz
...

Nice, the Snakemake correctly substituted the files in input and output to create the correct commands
for trimming.

Note: We used explicit file names for the expected target files in rule all based on the input sample file
names we knew existed in the fastq directory . However, we want to be general to be able to run any
files located in the fastq directory without explicitly listing them. Snakemake should identify the input
files and create expected target file names automatically based on the input file names.

1.4. Creating analysis workflows 15

Towards reproducible computational biology: An introductory tutorial, Release 2019.01

Lets rewrite it a bit to make the workflow more general, so that any file located in the fastq directory
that has the right file name structure is found by Snakemake:

Listing 1.4: File: Snakefile_v3

1 SAMPLES, = glob_wildcards("fastq/{sample}.fastq.gz")
2

3 rule all:
4 input:
5 expand("analyses/results/{sample}.trimmed.fastq.gz", sample=SAMPLES)
6

7 rule trimse:
8 input:
9 "fastq/{sample}.fastq.gz"

10 output:
11 "analyses/results/{sample}.trimmed.fastq.gz"
12 params:
13 qualtype="sanger"
14 shell:
15 "sickle se -g -t {params.qualtype} -f {input} -o {output}"

• We use an inbuilt function glob_wilcards to scan the fastq directory for files of a certain structure
and extract the sample identifier out of the file names.

• We use another inbuilt function expand in rule all to create a new “target” file name for each
sample identifier collected in the step before.

Running the same snakemake -np command again, will yield the same result as in the explicit case.
However, now it would not matter if we would add another 100 files to the fastq directory. Snakemake
would find them, without us doing anything else.

Error logging and benchmarking

There are a few things we can still add to our rule to facilitate error logging and benchmarking (the
process of testing how long a task takes):

Listing 1.5: File: Snakefile_v4

1 SAMPLES, = glob_wildcards("fastq/{sample}.fastq.gz")
2

3 rule all:
4 input:
5 expand("analyses/results/{sample}.trimmed.fastq.gz", sample=SAMPLES)
6

7 rule trimse:
8 input:
9 "fastq/{sample}.fastq.gz"

10 output:
11 "analyses/results/{sample}.trimmed.fastq.gz"
12 log:
13 "analyses/logs/{sample}.trimse"
14 benchmark:
15 "analyses/benchmarks/{sample}.trimse"
16 params:
17 qualtype="sanger"
18 shell:
19 "sickle se -g -t {params.qualtype} -f {input} -o {output}"
20 " 2> {log}"

• We are adding another keyword (log), specify the file where we want the logging to end up in (of
note: it also contains the same wildcard as the input and output files, thus gets substituted as well),
and add the error redirection to the wildcard log in the shell command.

16 Chapter 1. An introductory tutorial

Towards reproducible computational biology: An introductory tutorial, Release 2019.01

• We add another keyword (benchmark) and specify the file where we want the data to end up in.
We do not do anything else. Snakemake will take care of benchmarking for us.

Note: You should realise that the shell command can be written over several lines, like in the example
above.

If you rerun the snakemake command logging and benchmarking will be visible in the execution plan of
Snakemake. Because we specified the same wildcard in the benchmark file name, it gets substituted with
the sample identifier too.

$ snakemake -np
Building DAG of jobs...
Job counts:

count jobs
1 all
4 trimse
5

rule trimse:
input: fastq/SRR941830.fastq.gz
output: analyses/results/SRR941830.trimmed.fastq.gz
log: analyses/logs/SRR941830.trimse
jobid: 3
benchmark: analyses/benchmarks/SRR941830.trimse
wildcards: sample=SRR941830

sickle se -g -t sanger -f fastq/SRR941830.fastq.gz -o analyses/results/SRR941830.trimmed.fastq.gz 2>
→˓ analyses/logs/SRR941830.trimse
...

Integrating package management

Now that we are after reproducibility, we need to integrate package management into the workflow. This
is easily done with Snakemake55 using conda56. We can add another keyword argument to our rule that
specifies the conda environment that will be activated before running the particular rule.

You can find a minimal conda environment file for sickle in the envs directory: sickle.yaml.

Listing 1.6: File: envs/sickle.yaml

1 channels:
2 - bioconda
3 - conda-forge
4 - defaults
5 dependencies:
6 - sickle-trim ==1.33

The file specifies that the rule should be run with sickle version 1.33. Before running anything, Snake-
make will create the environment and store it in the current working directory in a subdirectory of
.snakemake. It will only be recreated if the yaml file changes. Otherwise, if Snakemake is rerun it will
use the already created environment.

Let us integrate conda and the environment in our sickle rule:

55 http://snakemake.readthedocs.io/en/latest/
56 http://conda.pydata.org/miniconda.html

1.4. Creating analysis workflows 17

http://snakemake.readthedocs.io/en/latest/
http://conda.pydata.org/miniconda.html

Towards reproducible computational biology: An introductory tutorial, Release 2019.01

Listing 1.7: File: Snakefile_v5

1 SAMPLES, = glob_wildcards("fastq/{sample}.fastq.gz")
2

3 rule all:
4 input:
5 expand("analyses/results/{sample}.trimmed.fastq.gz", sample=SAMPLES)
6

7 rule trimse:
8 input:
9 "fastq/{sample}.fastq.gz"

10 output:
11 "analyses/results/{sample}.trimmed.fastq.gz"
12 log:
13 "analyses/logs/{sample}.trimse"
14 benchmark:
15 "analyses/benchmarks/{sample}.trimse"
16 conda:
17 "envs/sickle.yaml"
18 params:
19 qualtype="sanger"
20 shell:
21 "sickle se -g -t {params.qualtype} -f {input} -o {output}"
22 " 2> {log}"

In order to tell the snakemake command that we want to make use of conda environments in our rules,
we need to specify the --use-conda flag when running Snakemake.

Note: Integrating conda’s environment capability in Snakemake is a powerful way to keep track of what
tools and versions of tools have been used.

Running Snakemake

Now that we have our first rules established, let us run Snakemake and look at the outputs.

In order to actually run the Snakemake workflow we need to adjust the snakemake command a bit:

$ snakemake -p --use-conda

We got rid of the -n flag that signalled a dry-run. We also added the --use-conda flag as we want
Snakemake to use conda environments when running our rules.

Let us look at the results in the analyses folder:

$ tree analyses
analyses/

benchmarks
SRR941826.trimse
SRR941827.trimse
SRR941830.trimse
SRR941831.trimse

logs
SRR941826.trimse
SRR941827.trimse
SRR941830.trimse
SRR941831.trimse

results
SRR941826.trimmed.fastq.gz
SRR941827.trimmed.fastq.gz

(continues on next page)

18 Chapter 1. An introductory tutorial

Towards reproducible computational biology: An introductory tutorial, Release 2019.01

(continued from previous page)

SRR941830.trimmed.fastq.gz
SRR941831.trimmed.fastq.gz

3 directories, 12 files
$ cat analyses/benchmarks/SRR941826.trimse
s h:m:s max_rss max_vms max_uss max_pss io_in io_out mean_load
0.7001 0:00:00 4.79 19.03 0.86 0.95 0.00 0.60 0.00
$ cat analyses/logs/SRR941826.trimse
$

Our result files, as well as benchmarks and log files, have been created.

If we would rerun snakemake, it would tell us that there are no jobs needed to run as all requirements
(targets) are satisfied.

$ snakemake -p --use-conda
Building DAG of jobs...
Nothing to be done.
Complete log: .../reproduce-tutorial/.snakemake/log/2018-06-12T142827.292869.snakemake.log

Let us delete a particular result file to test if Snakemake will realize that one sample is missing and still
needs to be run:

$ rm analyses/results/SRR941826.trimmed.fastq.gz
$ $ snakemake -n --use-conda
Building DAG of jobs...
Job counts:

count jobs
1 all
1 trimse
2

rule trimse:
input: fastq/SRR941826.fastq.gz
output: analyses/results/SRR941826.trimmed.fastq.gz
log: analyses/logs/SRR941826.trimse
jobid: 3
benchmark: analyses/benchmarks/SRR941826.trimse
wildcards: sample=SRR941826

localrule all:
input: analyses/results/SRR941827.trimmed.fastq.gz, analyses/results/SRR941826.trimmed.fastq.gz,

→˓ analyses/results/SRR941831.trimmed.fastq.gz, analyses/results/SRR941830.trimmed.fastq.gz
jobid: 0

Job counts:
count jobs
1 all
1 trimse
2

Indeed, Snakemake finds that we still need to run the rule trimse once to fulfil all requirements in rule
all.

Note: Benchmark and logging files will be overwritten in subsequent runs for the same sample.

1.4. Creating analysis workflows 19

Towards reproducible computational biology: An introductory tutorial, Release 2019.01

Visualising the workflow graph

Internally, Snakemake is creating a directed acyclic graph (DAG) of the rules and their dependencies. We
can generate a graphical visualisation of the graph and thus workflow (Fig. 1.6) using Snakemake and
Graphviz57:

$ snakemake --dag | dot -Tpng > dag.png

Fig. 1.6: The workflow v5 as a directed acyclic graph.

Note: This visualisation becomes bigger and bigger with more and more samples.

Building the remaining rules

We are adding two more rules. One rule for indexing of the genome using BWA and the another that will
take the index, as well as a sample fastq file, and map the reads to the genome.

We are adding to our Snakefile.

Listing 1.8: File: Snakefile_v6

1 SAMPLES, = glob_wildcards("fastq/{sample}.fastq.gz")
2

3 rule all:
4 input:
5 expand("analyses/results/{sample}.bam", sample=SAMPLES)
6

7 rule trimse:
8 input:
9 "fastq/{sample}.fastq.gz"

10 output:
11 "analyses/results/{sample}.trimmed.fastq.gz"
12 log:
13 "analyses/logs/{sample}.trimse"
14 benchmark:
15 "analyses/benchmarks/{sample}.trimse"
16 conda:
17 "envs/sickle.yaml"
18 params:
19 qualtype="sanger"
20 shell:
21 "sickle se -g -t {params.qualtype} -f {input} -o {output}"
22 " 2> {log}"
23

24 rule makeidx:
25 input:

(continues on next page)

57 http://graphviz.org/

20 Chapter 1. An introductory tutorial

http://graphviz.org/

Towards reproducible computational biology: An introductory tutorial, Release 2019.01

(continued from previous page)

26 fasta = "data/Saccharomyces_cerevisiae.R64-1-1.dna_sm.toplevel.fa"
27 output:
28 touch("data/makeidx.done")
29 log:
30 "analyses/logs/makeidx.log"
31 benchmark:
32 "analyses/benchmarks/makeidx.txt"
33 conda:
34 "envs/map.yaml"
35 shell:
36 "bwa index {input.fasta} 2> {log}"
37

38 rule map:
39 input:
40 reads = "analyses/results/{sample}.trimmed.fastq.gz",
41 idxdone = "data/makeidx.done"
42 output:
43 "analyses/results/{sample}.bam"
44 log:
45 "analyses/logs/{sample}.map"
46 benchmark:
47 "analyses/benchmarks/{sample}.map"
48 threads: 8
49 conda:
50 "envs/map.yaml"
51 params:
52 idx = "data/Saccharomyces_cerevisiae.R64-1-1.dna_sm.toplevel.fa"
53 shell:
54 "bwa mem -t {threads} {params.idx} {input.reads} | "
55 "samtools view -Sbh > {output} 2> {log}"

There are a few points that need a closer look:

1. On line 5 we are changing the final output to bam files, so that the mapping is run for all samples.

2. The shell command to index the genome with BWA does not create an output. Thus, we create a
pseudo output. On line 28 We are using the function touch to create an empty file after the rule is
successfully run. We require this file as input for the map rule on line 41 so that the indexing rule
is run before any mapping happens.

3. Line 41 also shows that we can have more than one input to a rule.

4. We see a new keyword in a rule on line 48 threads. This can be used to specify the number of
threads allowed for the rule when running snakemake with the --jobs NUM flag.

5. Line 54 and 55 show that we can chain shell commands easily in a Snakemake rule.

6. We also added a separate conda environment for indexing and mapping.

Finally, we add the rule to count the reads per features.

Listing 1.9: File: Snakefile_v7

1 SAMPLES, = glob_wildcards("fastq/{sample}.fastq.gz")
2

3 rule all:
4 input:
5 "analyses/results/counts.txt"
6

7 rule trimse:
8 input:
9 "fastq/{sample}.fastq.gz"

10 output:

(continues on next page)

1.4. Creating analysis workflows 21

Towards reproducible computational biology: An introductory tutorial, Release 2019.01

Fig. 1.7: The workflow v6 as a directed acyclic graph.

(continued from previous page)

11 "analyses/results/{sample}.trimmed.fastq.gz"
12 log:
13 "analyses/logs/{sample}.trimse"
14 benchmark:
15 "analyses/benchmarks/{sample}.trimse"
16 conda:
17 "envs/sickle.yaml"
18 params:
19 qualtype="sanger"
20 shell:
21 "sickle se -g -t {params.qualtype} -f {input} -o {output}"
22 " 2> {log}"
23

24 rule makeidx:
25 input:
26 fasta = "data/Saccharomyces_cerevisiae.R64-1-1.dna_sm.toplevel.fa"
27 output:
28 touch("data/makeidx.done")
29 log:
30 "analyses/logs/makeidx.log"
31 benchmark:
32 "analyses/benchmarks/makeidx.txt"
33 conda:
34 "envs/map.yaml"
35 shell:
36 "bwa index {input.fasta} 2> {log}"
37

38 rule map:
39 input:
40 reads = "analyses/results/{sample}.trimmed.fastq.gz",
41 idxdone = "data/makeidx.done"
42 output:
43 "analyses/results/{sample}.bam"
44 log:
45 "analyses/logs/{sample}.map"
46 benchmark:
47 "analyses/benchmarks/{sample}.map"
48 threads: 8
49 conda:
50 "envs/map.yaml"
51 params:
52 idx = "data/Saccharomyces_cerevisiae.R64-1-1.dna_sm.toplevel.fa"
53 shell:

(continues on next page)

22 Chapter 1. An introductory tutorial

Towards reproducible computational biology: An introductory tutorial, Release 2019.01

(continued from previous page)

54 "bwa mem -t {threads} {params.idx} {input.reads} | "
55 "samtools view -Sbh > {output} 2> {log}"
56

57 rule featurecount:
58 input:
59 gtf = "data/Saccharomyces_cerevisiae.R64-1-1.92.gtf.gz",
60 bams = expand("analyses/results/{sample}.bam", sample=SAMPLES)
61 output:
62 "analyses/results/counts.txt"
63 log:
64 "analyses/logs/featurecount.log"
65 benchmark:
66 "analyses/benchmarks/featurecount.txt"
67 conda:
68 "envs/subread.yaml"
69 threads: 4
70 shell:
71 "featureCounts -T {threads} -t exon -g gene_id -a {input.gtf} -o {output} {input.bams}"
72 " 2> {log}"

1. We need to change the input of rule all again to specify our final target (line 5).

2. On line 60 we are specifying all bam files as input, as featureCounts can be run on all samples at
the same time to produce one table of counts for all samples.

Fig. 1.8: The workflow v7 as a directed acyclic graph.

This looks very similar to our original workflow cartoon from the beginning.

1.4.6 Making your work available

We are left with one requirement that we wanted to address in this tutorial:

Publishing & versioning the workflow information, as to keep track of when workflows change
and what changes occurred.

After we created our workflow and our tool specifications in form of yaml files, we can make sure that
others are able to easily get to our workflow specifications. The easiest way to facilitate this, is to put
your directory under Git58 version control and push your repository to a remote provider like GitLab59 or

58 https://git-scm.com/
59 https://gitlab.com/

1.4. Creating analysis workflows 23

https://git-scm.com/
https://gitlab.com/

Towards reproducible computational biology: An introductory tutorial, Release 2019.01

Fig. 1.9: The original workflow.

GitHub60. The URL to this repository can be added to manuscripts or sent via emails to collaborators so
that others can easily download the repository and thus redo the analysis with the same settings, hence
we are fulfilling our last requirement above.

$ git init
$ git add Snakefile
$ git add envs/*
commit your changes
$ git commit -m "Init"
Create a remote on GitLab, GitHub, Bitbucket, etc.
and associate remote to repository
$ git remote add origin git@gitlab.com/...
$ git push -u origin master

Note: It might be tempting to add the input data as well to the repository. However, in most cases it will
be very big and you are better of using a remote storage location for the input data, e.g. Dropbox, Google
Cloud Storage, FTP, etc. Snakemake can deal with all of those remote locations and can download data
on demand. An example can be seen in the example file “Snakemake_v8” (see also below), where I
request the input data from a Google Cloud Storage bucket61. Of course there might be fees associated
with storing data in the cloud. For proper reproducibility it should be a persistent location. For genomic
data, free storage solutions like NCBI Short Read Archive62 or Gene Expression Ominbus63 can be used.

60 https://github.com/
61 https://cloud.google.com/storage/
62 https://www.ncbi.nlm.nih.gov/sra
63 https://www.ncbi.nlm.nih.gov/geo/

24 Chapter 1. An introductory tutorial

https://github.com/
https://cloud.google.com/storage/
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/geo/

Towards reproducible computational biology: An introductory tutorial, Release 2019.01

Listing 1.10: File: Snakefile_v8

1 from snakemake.remote.GS import RemoteProvider as GSRemoteProvider
2 GS = GSRemoteProvider()
3

4 # Read samples from a Google Cloud Storage bucket.
5 # Samples will be downloaded, processed locally and uploaded to google storage
6 # Call snakemake with the --default-remote-provider GS --default-remote-prefix BUCKET-PREFIX
7 SAMPLES, = GS.glob_wildcards("schmeier-reproduce-bucket/fastq/{sample}.fastq.gz")
8

9 rule all:
10 input:
11 expand("analyses/results/{sample}.trimmed.fastq.gz", sample=SAMPLES)
12 ...

1.5 Containerization

1.5.1 What is containerization?

Until recently when people were talking about virtualization, one would think of VirtualBox65 and full
GUI accessible virtual machines (VM), e.g. running a Ubuntu66 Linux VM on a Windows host machine.
However, containerization takes this concept to another level. Generally, containerization in enterprise
environments is used for micro-service virtualization, that is, to ship a specific application as a self-
contained unit, including operating system.

Containers are useful to ensure application and environment compatibility on different computing re-
sources. If you distribute applications or software through a container, whoever uses this container does
not have to deal with installing missing dependencies and the like. The container contains all of it, while
still being manageable in size.

The most famous container engine is Docker67. It is designed primarily for network micro-service virtu-
alization and facilitates creating, maintaining and distributing container images that are relatively easy
to install, well documented, and standardized. Docker containers are also kind of reproducible.

So why not use Docker? Using Docker on your local resources is great but unfortunately Docker contain-
ers are not designed for the use with traditional high performance computing.

Singularity68 to the rescue. Singularity is a containers engine developed at the Berkeley Lab and designed
for the needs of scientific workloads [KURTZER2017a]. Some points of note with regards to Singularity:

65 https://www.virtualbox.org
66 https://www.ubuntu.com
67 https://www.docker.com/
68 http://singularity.lbl.gov/

1.5. Containerization 25

https://www.virtualbox.org
https://www.ubuntu.com
https://www.docker.com/
http://singularity.lbl.gov/

Towards reproducible computational biology: An introductory tutorial, Release 2019.01

• Containers are stored in a single file.

• No system, architectural or workflow changes are necessary to integrate on HPC systems.

• Limits user’s privileges (inside user = outside user).

• Unlike Docker, there is no need for a root owned container daemon.

• However, Singularity is able to run Docker images.

• Simple integration with resource managers, InfiniBand, GPUs, MPI, file systems, and supports
multiple architectures.

• Security: When a container is launched by a user all programs inside the container run as that user.
If you want to be root inside the container, you must first be root outside of the container

1.5.2 What does it accomplish for us?

Once you have installed Singularity, you can use container images with pre-configured operating systems
and software installed. In our case of course software for analysing genomic data. You can build “rela-
tively” easy your own container (see an example below “Building your own Singularity container locally
(page 26)”) but you can also use preconfigured containers at will, e.g. from Biocontainers69. In this way
we can achieve another layer of reproducibility as we can package the tools we use in a container, that
can be run like it is on different host systems.

1.5.3 Using a Singularity container

First, we need to have Singularity70 installed on our system where we want to run the container (see
installation instructions here71). Second, we need a container. Lets download a ready-made container
containing BWA72 from the Biocontainers registry73 to see how this works:

$ singularity pull docker://biocontainers/bwa

Next, we can use BWA from within the container on files located on our host system, e.g.

$ singularity exec bwa.simg bwa mem -t 8 genomeindex sample.fastq > sample.sam

In this way BWA is compartmentalised and if someone else would use the same container, the version
of BWA, as well as the underlying operating system that executes BWA, would be the same as in our
analysis.

Note: Containers can of course change and be overwritten, however, in practise one could freeze a
container that was used for an analysis so that it can be re-used like in the original study.

We will integrate a container into our Snakemake74 workflow below, first however, we are going to see
how to build our own container.

1.5.4 Building your own Singularity container locally

I am going to build a Singularity75 container that contains the same tools and versions that we used in
the last section to analyse our data.

69 http://biocontainers.pro/
70 http://singularity.lbl.gov/
71 http://singularity.lbl.gov/docs-installation
72 http://bio-bwa.sourceforge.net/
73 https://biocontainers.pro/registry/#/
74 http://snakemake.readthedocs.io/en/latest/
75 http://singularity.lbl.gov/

26 Chapter 1. An introductory tutorial

http://biocontainers.pro/
http://singularity.lbl.gov/
http://singularity.lbl.gov/docs-installation
http://bio-bwa.sourceforge.net/
https://biocontainers.pro/registry/#/
http://snakemake.readthedocs.io/en/latest/
http://singularity.lbl.gov/

Towards reproducible computational biology: An introductory tutorial, Release 2019.01

Line 1 and 2 define the base container, here a docker container containing a Miniconda3 installation. In
the %environment part, starting on line 7, we define some environment variables within the container, so
that the conda command is exposed and ready to use within the container. Finally, in the %post section,
we add conda76 channels to make Bioconda77 tools available to the container and finally install the same
software and versions we used before. We clean out any remaining downloaded packages on line 25

Listing 1.11: File: Singularity

1 Bootstrap: docker
2 From: continuumio/miniconda3:4.4.10
3

4 %labels
5 AUTHOR email@email.com
6

7 %environment
8 # ~~~
9 # This sets global environment variables for anything run within the container

10 export PATH="/opt/conda/bin:/usr/local/bin:/usr/bin:/bin:"
11 unset CONDA_DEFAULT_ENV
12 export ANACONDA_HOME=/opt/conda
13

14 %post
15 # ~~~
16 # This is going to be executed after the base container has been downloaded
17 export PATH=/opt/conda/bin:$PATH
18 conda config --add channels defaults
19 conda config --add channels conda-forge
20 conda config --add channels bioconda
21 conda install --yes bwa=0.7.15
22 conda install --yes sickle-trim=1.33
23 conda install --yes subread=1.6.1
24 conda install --yes samtools=1.8
25 conda clean --index-cache --tarballs --packages --yes

If we have Singularity installed locally on our machine, we can build the container named biotools.simg
with the following command:

$ sudo singularity build biotools.simg Singularity

As can be seen in the command above, to build a new Singularity container, we need root privileges
(hence sudo) on the machine we want to build the container on. Sometimes, however, this is not possible,
e.g. on shared resources, like on cluster environments we do not normally have root privileges. This
brings us to the next section “Building a container on Singularity Hub (page 27)”.

1.5.5 Building a container on Singularity Hub

There is another method that we can use to integrate our container into our workflow. Instead of
building the container locally, we can automatically build the container in the “cloud” on Singularity
Hub78. In order to do this, we need to create a Git79 repository (here sschmeier/biotools at https:
//github.com/sschmeier/biotools) and add the Singularity file to the repository and push the repository
to GitHub80.

$ git init
$ git add Singularity
$ git commit -m "Init."

(continues on next page)

76 http://conda.pydata.org/miniconda.html
77 https://bioconda.github.io/
78 https://www.singularity-hub.org
79 https://git-scm.com/
80 https://github.com/

1.5. Containerization 27

http://conda.pydata.org/miniconda.html
https://bioconda.github.io/
https://www.singularity-hub.org
https://www.singularity-hub.org
https://git-scm.com/
https://github.com/sschmeier/biotools
https://github.com/sschmeier/biotools
https://github.com/

Towards reproducible computational biology: An introductory tutorial, Release 2019.01

(continued from previous page)

$ git remote add origin git@github.com:sschmeier/biotools.git
$ git push -u origin master

Next, we need to create an account (for free) on Singularity Hub and connect our GitHub repository.
Now, with every push of a changed Singularity file in our Git repository to GitHub, Singularity Hub will
detect that a change occurred and (re)build the container for us (see Fig. 1.10).

Fig. 1.10: A screen shot form the Singularity Hub website.

Once, the container has been build and stored on Singularity Hub, it is readily available for us and others
to be downloaded and used on a system that has Singularity installed, i.e. a Linux-based system.

$ singularity pull --name "biotools.simg" shub://sschmeier/biotools:latest
$ singularity exec biotools.simg samtools --version
samtools 1.8
Using htslib 1.8
Copyright (C) 2018 Genome Research Ltd.

Note: We can have different versions of our Singularity file, e.g. Singularity.01, or Singularity.
mickeymouse, etc. Singularity Hub will build one container for each Singularity file. These can be
later specifically “pulled” from the Hub. The original Singularity file will be automatically tagged as
latest, hence shub://sschmeier/biotools:latest in the above shell command, in which “latest” could
be ignored.

1.5.6 Using a container in our workflow

We need Singularity81 installed on the system we are going to use the container, however, we do not
need a privileged user to merely run Singularity. We will change a rule in our Snakefile file, so that
instead of using the local conda82 environment, Snakemake83 is going to pull our Singularity container

81 http://singularity.lbl.gov/
82 http://conda.pydata.org/miniconda.html
83 http://snakemake.readthedocs.io/en/latest/

28 Chapter 1. An introductory tutorial

http://singularity.lbl.gov/
http://conda.pydata.org/miniconda.html
http://snakemake.readthedocs.io/en/latest/

Towards reproducible computational biology: An introductory tutorial, Release 2019.01

from Singularity Hub84 and uses it to run the trimming step. The container is stored locally in your
current working directory within the .snakemake directory, so that it does not have to be pulled again as
long as it did not change. In the example below only the yellow part changed from the conda version to
the Singularity container version.

Listing 1.12: One rule of a Snakefile

1 rule trimse:
2 input:
3 "fastq/{sample}.fastq.gz"
4 output:
5 "analyses/results/{sample}.trimmed.fastq.gz"
6 log:
7 "analyses/logs/{sample}.trimse"
8 benchmark:
9 "analyses/benchmarks/{sample}.trimse"

10 conda:
11 "envs/sickle.yaml"
12 singularity:
13 "shub://sschmeier/biotools:latest"
14 params:
15 qualtype="sanger"
16 shell:
17 "sickle se -g -t {params.qualtype} -f {input} -o {output}"
18 " 2> {log}"

Execute the workflow from the command-line with:

$ snakemake -p --use-singularity

Even though the conda directive is still present int he rule, it will not be used without invocation through
the Snakemake85 flag --use-conda.

Note: By using both flags --use-singularity and --use-conda we can even mix the execution, some
rules that define a container will be run with the container, while others that still are defining a conda
environment will be run with the local conda environment. However, in practice this is not done most of
the times (see below).

Attention: Singularity86 by default only has access to the folders under your home directory. To be
able to use files that are located somewhere else in you system, you need to supply singularity ex-
plicitly with that location. This can be facilitated in Snakemake87 by adding the following argument:
--singularity-args "--bind /folder/to/allow/access".

1.5.7 Using one container for the whole workflow

Instead of defining one container per rule, we could also define one container for the whole Snakefile
and in this way have all rules run with the specified container:

Listing 1.13: Shown is part of a Snakefile

1 singularity: "shub://sschmeier/biotools:latest"
2

(continues on next page)

84 https://www.singularity-hub.org
85 http://snakemake.readthedocs.io/en/latest/
86 http://singularity.lbl.gov/
87 http://snakemake.readthedocs.io/en/latest/

1.5. Containerization 29

https://www.singularity-hub.org
http://snakemake.readthedocs.io/en/latest/
http://singularity.lbl.gov/
http://snakemake.readthedocs.io/en/latest/

Towards reproducible computational biology: An introductory tutorial, Release 2019.01

(continued from previous page)

3 rule trimse:
4 input:
5 "fastq/{sample}.fastq.gz"
6 output:
7 "analyses/results/{sample}.trimmed.fastq.gz"
8 log:
9 "analyses/logs/{sample}.trimse"

10 benchmark:
11 "analyses/benchmarks/{sample}.trimse"
12 params:
13 qualtype="sanger"
14 shell:
15 "sickle se -g -t {params.qualtype} -f {input} -o {output}"
16 " 2> {log}"
17

18 rule map:
19 ...

1.5.8 Ready made containers

In any case, it needs to be pointed out that we do not necessarily need to build and use our own
containers. Biocontainers88 collects containers for lots of different purposes. However, to achieve best
possible reproducibility your own containers on Singularity Hub89 would be preferable as one has control
over freezing container states and thus making them truly reproducible. In practise one could place the
URL to the container (on Singularity Hub) in the Methods part of a manuscript. In this way it would
be clear what versions of tools have been used for the analyses and everyone can pull and re-use the
container.

1.5.9 Combining containers with conda-based package management

The former section outlined how to use one container for the whole workflow. This can be combined
with conda90-based package management to make use of both containerization and rule-based package
management. This is really powerful. We can define a global conda91 docker container and still use
per rule yaml files for package definitions. In this way, Snakemake92 will first enter the container and
create conda93 environments based on the yaml-file definitions. Upon execution of a rule, Snakemake94

will first enter the container and activate the environment subsequently before the rule is executed. This
process gives us a bit more flexibility in terms of package management, with the added benefit of not
having to create several Singularity95 images. An example definition is shown below:

Listing 1.14: Shown is part of a Snakefile

1 singularity: "docker://continuumio/miniconda3:4.5.11"
2

3 rule trimse:
4 input:
5 "fastq/{sample}.fastq.gz"
6 output:
7 "analyses/results/{sample}.trimmed.fastq.gz"
8 log:

(continues on next page)

88 http://biocontainers.pro/
89 https://www.singularity-hub.org
90 http://conda.pydata.org/miniconda.html
91 http://conda.pydata.org/miniconda.html
92 http://snakemake.readthedocs.io/en/latest/
93 http://conda.pydata.org/miniconda.html
94 http://snakemake.readthedocs.io/en/latest/
95 http://singularity.lbl.gov/

30 Chapter 1. An introductory tutorial

http://biocontainers.pro/
https://www.singularity-hub.org
http://conda.pydata.org/miniconda.html
http://conda.pydata.org/miniconda.html
http://snakemake.readthedocs.io/en/latest/
http://conda.pydata.org/miniconda.html
http://snakemake.readthedocs.io/en/latest/
http://singularity.lbl.gov/

Towards reproducible computational biology: An introductory tutorial, Release 2019.01

(continued from previous page)

9 "analyses/logs/{sample}.trimse"
10 benchmark:
11 "analyses/benchmarks/{sample}.trimse"
12 conda:
13 "envs/sickle.yaml"
14 params:
15 qualtype="sanger"
16 shell:
17 "sickle se -g -t {params.qualtype} -f {input} -o {output}"
18 " 2> {log}"
19

20 rule map:
21 ...

1.5.10 Background reading on containers

• Singularity Containers for Science. Kurtzer GM. [KURTZER2017a]

• Singularity: Scientific containers for mobility of compute. [KURTZER2017b]

1.6 Downloads

1.6.1 Tools

• Miniconda installer [EXTERNAL98 | INTERNAL99 | DROPBOX100]

1.6.2 Data

• The Data-set can be downloaded from GitLab using: git clone https://gitlab.com/schmeierlab/
reproduce-tutorial.git.

• Alternatively, you can visit https://gitlab.com/schmeierlab/reproduce-tutorial and download a
zipped version of the repository.

98 https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh
99 http://compbio.massey.ac.nz/data/203341/Miniconda3-latest-Linux-x86_64.sh

100 https://www.dropbox.com/s/tz2wocdzjr4grdy/Miniconda3-latest-Linux-x86_64.sh?dl=0

1.6. Downloads 31

https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh
http://compbio.massey.ac.nz/data/203341/Miniconda3-latest-Linux-x86_64.sh
https://www.dropbox.com/s/tz2wocdzjr4grdy/Miniconda3-latest-Linux-x86_64.sh?dl=0
https://gitlab.com/schmeierlab/reproduce-tutorial

Towards reproducible computational biology: An introductory tutorial, Release 2019.01

32 Chapter 1. An introductory tutorial

LIST OF FIGURES

1.1 RNA-seq overview (from https://doi.org/10.1371/journal.pcbi.1004393) [GRIFFITH2015]. 3
1.2 The tutorial will analyse data using this workflow. 3
1.3 The workflow: Data QC step. 11
1.4 The workflow: The mapping step. 11
1.5 The workflow: Expression quantification step. 12
1.6 The workflow v5 as a directed acyclic graph. 20
1.7 The workflow v6 as a directed acyclic graph. 22
1.8 The workflow v7 as a directed acyclic graph. 23
1.9 The original workflow. 24
1.10 A screen shot form the Singularity Hub website. 28

33

https://doi.org/10.1371/journal.pcbi.1004393

Towards reproducible computational biology: An introductory tutorial, Release 2019.01

34 List of Figures

LIST OF TABLES

35

Towards reproducible computational biology: An introductory tutorial, Release 2019.01

36 List of Tables

BIBLIOGRAPHY

[GRUENING2018] Grüning B, et al. Bioconda: sustainable and comprehensive software distribution for
the life sciences. Nature Methods, 2018, 15:475–476.18

[KOESTER2012] Köster J and Rahmann S. Snakemake - A scalable bioinformatics workflow engine.
Bioinformatics 2012, 10.1093/bioinformatics/bts480.19

[ASLANKOOHI2013] Aslankoohi E, et al. Dynamics of the Saccharomyces cerevisiae Transcriptome dur-
ing Bread Dough Fermentation. Appl Environ Microbiol. 2013 Dec; 79(23): 7325–7333.20

[GRIFFITH2015] Griffith M, Walker JR, Spies NC, Ainscough BJ, Griffith OL. Informatics for RNA Se-
quencing: A Web Resource for Analysis on the Cloud. PLoS Comput Biol. 2015 Aug
6;11(8):e1004393. doi: 10.1371/journal.pcbi.100439321.

[COLLINS2014] Collins FS, Tabak LA. NIH plans to enhance reproducibility. Nature. 2014 Jan;505:612-
613. doi: 10.1038/505612a22

[CASADEVALL2016] Casadevall A, Ellis LM, Davies EW, McFall-Ngai M, Fang FC. A Framework for Im-
proving the Quality of Research in the Biological Sciences. MBio. 2016 Aug 30;7(4). pii:
e01256-16. doi: 10.1128/mBio.01256-1623.

[RAVEL2014] Ravel J, Wommack KE. All hail reproducibility in microbiome research. Microbiome. 2014
Mar 7;2(1):8. doi: 10.1186/2049-2618-2-824.

[GARIJO2013] Garijo D, Kinnings S, Xie L, Xie L, Zhang Y, Bourne PE, Gil Y. Quantifying reproducibil-
ity in computational biology: The case of the tuberculosis drugome. PLOS ONE. 2013
Nov;505:612-613. doi: 10.1371/journal.pone.008027825.

[NOBLE2009] Noble WS. A quick guide to organizing computational biology projects. PLoS Comput
Biol. 2009 Jul;5(7):e1000424. doi: 10.1371/journal.pcbi.100042426.

[KANWAL2017] Kanwal S, Zaib F, Lonie A, Sinnott RO. Investigating reproducibility and tracking
provenance – A genomic workflow case study. BMC Bioinformatics, 2017, 18:337, doi:
10.1186/s12859-017-1747-0.27

[LEIPZIG2017] Leipzig J. A review of bioinformatic pipeline frameworks. Briefings in Bioinformatics,
Volume 18, Issue 3, 1 May 2017, Pages 530–536,64

[JOSHI2011] Joshi NA, Fass JN. Sickle: A sliding-window, adaptive, quality-based trimming tool for
FastQ files (Version 1.33) [Software]. (2011) Available at https://github.com/najoshi/
sickle.

18 http://dx.doi.org/10.1038/s41592-018-0046-7
19 https://doi.org/10.1093/bioinformatics/bts480
20 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3837736/
21 http://doi.org/10.1371/journal.pcbi.1004393
22 http://doi.org/10.1038/505612a
23 http://doi.org/10.1128/mBio.01256-16
24 http://doi.org/10.1186/2049-2618-2-8
25 http://doi.org/10.1371/journal.pone.0080278
26 http://doi.org/10.1371/journal.pcbi.1000424
27 https://doi.org/10.1186/s12859-017-1747-0
64 https://doi.org/10.1093/bib/bbw020

37

http://dx.doi.org/10.1038/s41592-018-0046-7
https://doi.org/10.1093/bioinformatics/bts480
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3837736/
http://doi.org/10.1371/journal.pcbi.1004393
http://doi.org/10.1371/journal.pcbi.1004393
http://doi.org/10.1038/505612a
http://doi.org/10.1038/505612a
http://doi.org/10.1128/mBio.01256-16
http://doi.org/10.1128/mBio.01256-16
http://doi.org/10.1186/2049-2618-2-8
http://doi.org/10.1186/2049-2618-2-8
http://doi.org/10.1371/journal.pone.0080278
http://doi.org/10.1371/journal.pone.0080278
http://doi.org/10.1371/journal.pcbi.1000424
http://doi.org/10.1371/journal.pcbi.1000424
https://doi.org/10.1186/s12859-017-1747-0
https://doi.org/10.1186/s12859-017-1747-0
https://doi.org/10.1093/bib/bbw020
https://doi.org/10.1093/bib/bbw020
https://github.com/najoshi/sickle
https://github.com/najoshi/sickle

Towards reproducible computational biology: An introductory tutorial, Release 2019.01

[KURTZER2017a] Kurtzer GM. Singularity Containers for Science. Presentation [PDF]96

[KURTZER2017b] Kurtzer GM, Sochat V, Bauer MW. Singularity: Scientific containers for mobility of
compute. PLoS ONE 12(5): e0177459. https://doi.org/10.1371/journal.pone.017745997

96 http://www.hpcadvisorycouncil.com/events/2017/stanford-workshop/pdf/GMKurtzer_Singularity_Keynote_Tuesday_
02072017.pdf

97 https://doi.org/10.1371/journal.pone.0177459

38 Bibliography

http://www.hpcadvisorycouncil.com/events/2017/stanford-workshop/pdf/GMKurtzer_Singularity_Keynote_Tuesday_02072017.pdf
https://doi.org/10.1371/journal.pone.0177459

	An introductory tutorial
	Introduction
	Prerequisites
	Learning outcomes
	The data we will be using
	The analysis workflow

	Working reproducible
	What is the problem?
	How to tackle this problem?
	Background reading on reproducibility

	Tool and package management
	Installing the Conda package manager
	Using conda to search and install tools
	Create isolated environments
	General Conda commands

	Creating analysis workflows
	What is a workflow management system?
	What is Snakemake?
	Setup
	The analysis without a workflow management system
	Using a workflow management system
	Making your work available

	Containerization
	What is containerization?
	What does it accomplish for us?
	Using a Singularity container
	Building your own Singularity container locally
	Building a container on Singularity Hub
	Using a container in our workflow
	Using one container for the whole workflow
	Ready made containers
	Combining containers with conda-based package management
	Background reading on containers

	Downloads
	Tools
	Data

	Bibliography

